Topological properties of some sequences defined over 2-normed spaces
نویسندگان
چکیده
The paper investigates some classes of real number sequences over 2-normed spaces defined by means of Orlicz functions, a bounded sequence of strictly positive real numbers, a multiplier and a normal paranormed sequence space. Relevant properties of such classes have been investigated. Moreover, relationships among different such classes of sequences have also been studied under various parameters and conditions. Finally, the spaces are investigated for some other useful properties. The conclusion section provides many interesting facts for further research.
منابع مشابه
Weak Convergence and Weak* Convergence1
In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By...
متن کاملVector Valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak
In this article, we define the vector valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak and study some of their topological properties and some inclusion results.
متن کاملDOUBLE SEQUENCE SPACES OVER n-NORMED SPACES
In this paper, we define some classes of double sequences over n-normed spaces by means of an Orlicz function. We study some relevant algebraic and topological properties. Further some inclusion relations among the classes are also examined.
متن کاملSOME MULTIPLIER SEQUENCE SPACES DEFINED BY A MUSIELAK-ORLICZ FUNCTION IN n-NORMED SPACES
In the present paper we introduced some multiplier sequence spaces defined by a Musielak-Orlicz function M = (Mk) in n-normed spaces and examine some topological properties and some inclusion relation between the resulting sequence spaces.
متن کاملStrongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016